
La  producción, transformación y consumo final de tal cantidad de energía es la  causa principal de la degradación ambiental. El consumo está muy desigualmente  repartido, pues los países de la OCDE, con el 15% de la población mundial,  consumen el 60% de la energía, factor este último a tener en cuenta a la hora de  repartir responsabilidades de la crisis ambiental.  

El  consumo de energía primaria en España ha pasado de 88 Mtep en 1990 a 132,6 Mtep  en el año 2003 (un 50,7% de aumento), año en el que la dependencia energética  alcanzó el 78%, a pesar de que en la producción nacional se incluye por razones  metodológicas muy discutibles la energía nuclear. Si se cumplen las previsiones  del anterior gobierno del PP las emisiones de dióxido de carbono de origen  energético aumentarán un 58% entre 1990 y 2010, en el escenario más favorable,  lo que hace matemáticamente imposible cumplir el Protocolo de Kioto. La  producción, transformación y uso final de tal cantidad de energía también en  España es la causa principal de la degradación ambiental: 9 centrales nucleares  en funcionamiento y una cerrada definitivamente, un grave problema de residuos  radiactivos sin resolver, cerca de un millar de embalses que han anegado de  forma irreversible 3.000 kilómetros cuadrados, y las emisiones de gases de  invernadero, que representan el 77,73% del total. Además se emiten 2,4 millones  de toneladas de dióxido de azufre y 1,3 millones de toneladas de óxidos de  nitrógeno. Al ritmo actual de extracción, las reservas estimadas de carbón  durarán 1.500 años, las de gas natural 120 y las de petróleo no menos de 60  años. La mejora de las tecnologías de extracción incrementará la duración de las  reservas, al acceder a las zonas marítimas profundas. No existe un problema de  agotamiento de los combustibles fósiles en un horizonte inmediato, aunque el  consumo actual es 100.000 veces más rápido que su velocidad de formación; la  verdadera cuestión es la de los sumideros, como la atmósfera, donde se acumula  el dióxido de carbono y otros gases de invernadero, con el subsiguiente  calentamiento. Los altos precios del petróleo agravan la situación, aunque  conviene recordar que son muy inferiores a los de 1980, año en que se llegó a 80  dólares el barril a precios actuales, pasando el dólar de entonces al de hoy,  teniendo en cuenta la inflación. 

La grave crisis ambiental, el agotamiento de los recursos y  los desequilibrios entre el Norte y el Sur, son factores que obligan a acometer  una nueva política energética. A corto plazo la prioridad es incrementar la  eficiencia energética, pero ésta tiene unos límites económicos y termodinámicos,  por lo que a más largo plazo sólo el desarrollo de las energías renovables  permitirá resolver los grandes retos del futuro. Las energías renovables son la  única solución sostenible, y la energía nuclear, de fisión o fusión, sólo  agravaría la situación y conducen a un camino sin salida, de proliferación  nuclear y generación de residuos radiactivos. 
¿Qué son las energías  renovables?Bajo la denominación de energías renovables, alternativas o  blandas, se engloban una serie de fuentes energéticas que a veces no son nuevas,  como la leña o las centrales hidroeléctricas, ni renovables en sentido estricto  (geotermia), y que no siempre se utilizan de forma blanda o descentralizada, y  su impacto ambiental puede llegar a ser importante, como los embalses para usos  hidroeléctricos o los monocultivos de biocombustibles. Actualmente suministran  un 20% del consumo mundial (las estadísticas no suelen reflejar su peso real),  siendo su potencial enorme, aunque dificultades de todo orden han retrasado su  desarrollo en el pasado.  

Con  la excepción de la geotermia, la totalidad de las energías renovables derivan  directa o indirectamente de la energía solar. Directamente en el caso de la luz  y el calor producidos por la radiación solar, e indirectamente en el caso de las  energías eólica, hidráulica, mareas, olas y biomasa, entre otras. Las energías  renovables, a lo largo de la historia y hasta bien entrado el siglo XIX, han  cubierto la práctica totalidad de las necesidades energéticas del hombre. Sólo  en los últimos cien años han sido superadas, primero por el empleo del carbón, y  a partir de 1950 por el petróleo y en menor medida por el gas natural. La  energía nuclear, con 441 centrales nucleares en 2003, con una potencia instalada  de 360 GW, cubre una parte insignificante del consumo mundial, y a pesar de  algunas previsiones optimistas, su papel será siempre marginal. Aún hoy, para  más de dos mil millones de personas de los países del Sur, la principal fuente  energética es la leña, afectada por una auténtica crisis energética, a causa de  la deforestación y del rápido crecimiento demográfico. La biomasa, y  fundamentalmente la leña, suministra un 14% del consumo mundial, cifra que en  los países del Sur se eleva al 35% globalmente, aunque en Tanzania llega al 90%  y en India supera el 50%; en el país más rico, Estados Unidos, representa el 4%  del consumo global, porcentaje superior al de la energía nuclear, en la Unión  Europea el 3,7% y en España el 3%. En 1999 se aprobó el Plan de Fomento de las  Energías Renovables en España, donde se establecían los objetivos para el año  2010. Dado el desarrollo actual, el Plan no se cumplirá, aunque el IDAE ha  revisado al alza los objetivos e intenta crear las condiciones que permitan  recuperar el tiempo perdido. Las energías renovables en el año 2003  representaron el 6% del consumo de energía primaria, cifra muy alejada del 12%  que se quiere alcanzar en 2010. El Plan de 1999 y la Directiva 2001/77/CE prevén  producir el 29,4% del total de la electricidad en 2010 con renovables. 
El sol  sale para todosLa energía solar absorbida por la Tierra en un año es  equivalente a 20 veces la energía almacenada en todas las reservas de  combustibles fósiles en el mundo y diez mil veces superior al consumo actual. El  sol es la única fuente de materia orgánica y de energía vital de la Tierra, y  aunque a veces nos pasa desapercibido, ya hoy estamos utilizando masivamente la  energía solar, en forma de alimentos, leña o energía hidroeléctrica. Los mismos  combustibles fósiles, cuya quema está en el origen del deterioro ambiental, no  son otra cosa que energía solar almacenada a lo largo de millones de años. La  fotosíntesis es hoy el empleo más importante de la energía solar, y la única  fuente de materia orgánica, es decir, de alimentos y biomasa. Aunque todas las  fuentes energéticas, salvo la geotermia y la nuclear, proceden del sol, en la  acepción actual el término solar tiene un significado restringido al empleo  directo de la energía del sol, ya sea en forma de calor o de luz. El sol sale  para todos cada día y seguirá enviándonos asombrosas cantidades de calor y de  energía, ajeno al aprovechamiento que podamos hacer de ella. Su mayor virtud es  también su mayor defecto, al tratarse de una forma de energía difusa y poco  concentrada, y de ahí las dificultades que entraña el aprovechamiento directo de  la radiación solar, en una sociedad en la que el consumo de energía se concentra  en unas pocas fábricas industriales y grandes metrópolis. La distribución de la  radiación solar registra grandes variaciones geográficas, pues va desde dos kWh  por m2 y día en el norte de Europa a 8 kWh por m2 en el desierto del Sahara.  Igualmente importantes son las variaciones diarias y estacionales de la  radiación solar, y sus dos componentes, la radiación directa y la difusa. La  radiación directa es la recibida del sol cuando el cielo está despejado, y la  difusa la que resulta de reflejarse en la atmósfera y las nubes. Algunos equipos  utilizan ambas, y otros sólo la directa, como es el caso de las centrales de  torre.  

El  aprovechamiento de la energía solar puede ser indirecto, a través del viento  (eólica) y la evaporación del agua (hidráulica), entre otras formas, o directo,  mediante la captación térmica activa o pasiva y merced a la captación fotónica.  Ejemplo de esta última es la captación fotoquímica que realizan las plantas, y  el efecto fotoeléctrico, origen de las actuales células fotovoltaicas. Los  únicos impactos negativos se podrían dar en el caso hipotético de grandes  centrales solares en el espacio, y en menor medida en las centrales de torre  central, debido al empleo en éstas de sustancias potencialmente contaminantes,  utilizadas para la acumulación y transmisión del calor. Otro posible efecto es  el uso del territorio, debido a las grandes superficies requeridas, aunque un  país como España podría resolver todas sus necesidades de electricidad con  apenas 1.000 km2, el 0,2 % de su territorio. 
HidrógenoLa producción de  hidrógeno es un proceso aún inmaduro tecnológicamente y costoso, por lo que se  requerirán enormes inversiones en investigación. Cuando se llegue a producir  hidrógeno comercialmente, dentro de 10 o 20 años, y a partir de factores tan  abundantes como son el agua y la energía solar y eólica, los problemas  energéticos y ambientales quedarán resueltos, pues el hidrógeno, a diferencia de  otros combustibles, no es contaminante. El hidrógeno se produce por  electrólisis, proceso que requiere grandes cantidades de electricidad, la cual  puede obtenerse merced a las células fotovoltaicas y a los aerogeneradores,  almacenando de esta forma la energía solar y eólica. En cualquier caso en las  próximas décadas entraremos en una economía basada en el hidrógeno como  combustible secundario o vector energético; su combustión apenas contamina. La  energía primaria para su obtención será la solar y la eólica, y la conversión se  hará en pilas de combustible, lo que supondrá una gran revolución. Hacia el año  2020 se espera que la mayor parte de los vehículos funcionen con pilas de  combustible.  
 Desde  la antigua Grecia a hoy
Desde  la antigua Grecia a hoyEl uso pasivo de la energía solar se inició en un  pasado muy lejano. En la antigua Grecia Sócrates señaló que la casa ideal  debería ser fresca en verano y cálida en invierno, explicando que "en las casas  orientadas al sur, el sol penetra por el pórtico en invierno, mientras que en  verano el arco solar descrito se eleva sobre nuestras cabezas y por encima del  tejado, de manera que hay sombra". En la época de los romanos, la garantía de  los derechos al sol quedó incorporada en la ley romana, y así, el Código de  Justiniano, recogiendo códigos anteriores, señalaba que "si un objeto está  colocado en manera de ocultar el sol a un heliocaminus, debe afirmarse que tal  objeto crea sombra en un lugar donde la luz solar constituye una absoluta  necesidad. Esto es así en violación del derecho del heliocaminus al sol".  Arquímedes, 212 años antes de Cristo, según la leyenda, utilizó espejos  incendiarios para destruir los barcos romanos que sitiaban Siracusa. Roger  Bacon, en el siglo trece, propuso al Papa Clemente IV el empleo de espejos  solares en las Cruzadas, pues "este espejo quemaría ferozmente cualquier cosa  sobre la que se enfocara. Debemos pensar que el Anticristo utilizará estos  espejos para incendiar ciudades, campos y armas". En 1839, el científico francés  Edmund Becquerel descubre el efecto fotovoltaico y en 1954 la Bell Telephone  desarrolla las primeras células fotovoltaicas, aplicadas posteriormente por la  NASA a los satélites espaciales Vanguard y Skylab, entre otros. La llamada  arquitectura bioclimática, heredera del saber de la arquitectura popular, es la  adaptación de la edificación al clima local, reduciendo considerablemente el  gasto en calefacción y refrigeración, respecto a la actual edificación. Es  posible conseguir, con un consumo mínimo, edificios confortables y con  oscilaciones de temperatura muy pequeñas a lo largo del año, aunque en el  exterior las variaciones climáticas sean muy acusadas. El diseño, la  orientación, el espesor de los muros, el tamaño de las ventanas, los materiales  de construcción empleados y el tipo de acristalamiento, son algunos de los  elementos de la arquitectura solar pasiva, heredera de la mejor tradición  arquitectónica. Inversiones que rara vez superan el cinco por ciento del coste  de la edificación, permiten ahorros energéticos de hasta un 80% del consumo,  amortizándose rápidamente el sobrecoste inicial. El uso de la energía solar en  la edificación presupone la desaparición de una única tipología constructiva,  utilizada hoy desde las latitudes frías del norte de Europa hasta el Ecuador. Si  la vivienda no se construye adaptada al clima, calentarla o refrigerarla siempre  será un grave problema que costará grandes cantidades de energía y dinero.  
 El  colector solar
El  colector solarEl colector solar plano, utilizado desde principios de siglo  para calentar el agua hasta temperaturas de 80 grados centígrados, es la  aplicación más común de la energía térmica del sol. Países como Alemania,  Austria, Japón, Israel, Chipre o Grecia han instalado varios millones de  unidades.  

Los  elementos básicos de un colector solar plano son la cubierta transparente de  vidrio y una placa absorbente, por la que circula el agua u otro fluido  caloportador. Otros componentes del sistema son el aislamiento, la caja  protectora y un depósito acumulador. Cada metro cuadrado de colector puede  producir anualmente una cantidad de energía equivalente a unos ochenta  kilogramos de petróleo.  

Las  aplicaciones más extendidas son la generación de agua caliente para hogares,  piscinas, hospitales, hoteles y procesos industriales, y la calefacción, empleos  en los que se requiere calor a bajas temperaturas y que pueden llegar a  representar más de una décima parte del consumo. A diferencia de las tecnologías  convencionales para calentar el agua, las inversiones iniciales son elevadas y  requieren un periodo de amortización comprendido entre 5 y 7 años, si bien, como  es fácil deducir, el combustible es gratuito y los gastos de mantenimiento son  bajos.  

Más  sofisticados que los colectores planos son los colectores de vacío y los  colectores de concentración, más caros, pero capaces de lograr temperaturas más  elevadas, lo que permite cubrir amplios segmentos de la demanda industrial e  incluso producir electricidad. Los colectores solares de concentración lineal  son espejos cilindroparabólicos, que disponen de un conducto en la línea focal  por el que circula el fluido caloportador, capaz de alcanzar los 400 grados  centígrados. Con tales temperaturas se puede producir electricidad y calor para  procesos industriales. En Estados Unidos operan más de cien mil metros cuadrados  de concentradores lineales, y la empresa "Luz Internacional" instaló en  California seis centrales para producir electricidad, con una potencia de 354 MW  eléctricos (1 MW=1.000 kW), y unos rendimientos satisfactorios. El coste del kWh  asciende a 15 céntimos de dólar, todavía superior al convencional, pero  interesante en numerosas zonas alejadas de la red de distribución que tengan  buena insolación. Las perspectivas son halagüeñas, a pesar de algunos fracasos,  como probó la quiebra de Luz en 1991 y su posterior venta, y hoy hay varios  proyectos en marcha en España e India, entre otros países. El plan del gobierno  prevé producir 180 ktep en el año 2010 de solar termoeléctrica, con una potencia  instalada de sólo 200 megavatios y una producción de 458,9 GWh/año. 

Los colectores puntuales son espejos parabólicos en cuyo  foco se dispone un receptor, en el que se produce el calentamiento del fluido de  transferencia, posteriormente enviado a una turbina centralizada, o se instala  directamente un motor. Las llamadas centrales solares de torre central consisten  en numerosos espejos de gran superficie (helióstatos) que, gracias a la  orientación constante, concentran la radiación solar en un receptor de vapor  situado en lo alto de una torre. El desarrollo de helióstatos de bajo coste,  utilizando nuevos materiales como el poliéster, la fibra de vidrio o las  membranas tensionadas de fibra de grafito y receptores más fiables y eficientes,  abre nuevas posibilidades al empleo de la energía solar para la obtención de  electricidad.  

En  España queda mucho por hacer en energía solar. Mientras que en el año 2002 sólo  teníamos 522.561 metros cuadrados de colectores solares, en Alemania, con mucho  menos sol y menos superficie, ¡tenían 3.365.000 metros cuadrados ya en 2000! En  Grecia tenían 2.460.000 metros cuadrados y en Austria 2.170.000 metros  cuadrados. Los objetivos son llegar a 336 ktep en 2010, instalando un total de  4.500.000 metros cuadrados adicionales. Las nuevas normativas municipales, que  obligan a instalar colectores solares en todas las viviendas de nueva  construcción o grandes rehabilitaciones, permitirán relanzar un mercado con  enorme futuro. La demanda potencialmente atendible con colectores solares planos  asciende a 6,1 Mtep. 
Células solaresLa producción de electricidad a  partir de células fotovoltaicas es aún seis veces más cara que la obtenida en  centrales de carbón, pero hace tan sólo dos décadas era veinte veces más. En  1960 el coste de instalar un solo vatio de células fotovoltaicas, excluyendo las  baterías, transformadores y otros equipos auxiliares, ascendía a 2.000 dólares;  en 1975 era ya sólo 30 dólares y en 2004 va de 2,62 dólares a 4,25, dependiendo  de la cantidad y el tipo de instalación. Si en 1975 el kWh costaba más de 7  euros, el precio actual está entre 0,3 y 0,6 euros, lo que permite que el empleo  de células fotovoltaicas para producir electricidad en lugares alejados de las  redes de distribución ya compita con las alternativas existentes, como  generadores eléctricos a partir del petróleo. Hoy, en Estados Unidos la  producción de un kWh cuesta de 4 a 8 céntimos de dólar en una central de carbón,  de 4 a 6 en los parques eólicos, de 5 a 10 en una de petróleo, de 12 a 15 en una  central nuclear y de 25 a 40 céntimos utilizando células fotovoltaicas. En los  próximos años se espera reducir el coste del kWh a 12 céntimos de euro antes de  2010 y a 4 céntimos para el año 2030. Claro que en los costes anteriores no se  incluyen los resultados del deterioro causado al ambiente por las distintas  maneras de producir la electricidad. 

El efecto fotovoltaico, descubierto por Becquerel en 1839,  consiste en la generación de una fuerza electromotriz en un dispositivo  semiconductor, debido a la absorción de la radiación luminosa. Las células  fotovoltaicas convierten la energía luminosa del sol en energía eléctrica, con  un único inconveniente: el coste económico todavía muy elevado para la  producción centralizada. Sin embargo, las células fotovoltaicas son ya  competitivas en todos aquellos lugares alejados de la red y con una demanda  reducida, como aldeas y viviendas sin electrificar, repetidores de televisión,  balizas, agricultura, faros, calculadoras y otros bienes de consumo. A lo largo  de toda la década el mercado fotovoltaico creció a ritmos anuales superiores al  40%, y ya hay más de 2.500 megavatios instalados en todo el mundo. Se calcula  que deberán instalarse aún otros 85.000 MWp, invirtiendo unos 50.000 millones de  euros, para conseguir que la fotovoltaica sea competitiva en el mercado, lo que  implica un precio de 1 euro por vatio. Para obtener una reducción del 20% del  precio, se debe duplicar la producción, según la curva de experiencia o de  aprendizaje. Actualmente la mayoría de las células fotovoltaicas son de silicio  monocristalino de gran pureza, material obtenido a partir de la arena, muy  abundante en la naturaleza. La purificación del silicio es un proceso muy  costoso, debido a la dependencia del mercado de componentes electrónicos, que  requiere una pureza (silicio de grado electrónico) superior a la requerida por  las células fotovoltaicas. La obtención de silicio de grado solar, directamente  del silicio metalúrgico, cuya pureza es del 98%, abarataría considerablemente  los costes, al igual que la producción de células a partir del silicio amorfo u  otros procedimientos, hoy en avanzado estado de investigación y cuyos resultados  pueden ser decisivos en la próxima década. La multinacional BP produce células  de alto rendimiento en su fábrica de Madrid, la denominada Saturno. El apoyo  institucional, abriendo nuevos mercados, puede acortar el tiempo necesario para  la plena competitividad de las células fotovoltaicas. La superficie ocupada no  plantea problemas. En el área mediterránea se podrían producir 90 millones de  kWh anuales por kilómetro cuadrado de superficie cubierta de células  fotovoltaicas, y antes del año 2010, con los rendimientos previstos, se  alcanzarán los 150 millones de kWh por km2. Por lo que se refiere al  almacenamiento, la producción de hidrógeno por electrólisis y su posterior  empleo para producir electricidad u otros usos, puede ser una óptima solución.  El objetivo del gobierno era tener instalados 143,7 MWp (megavatios pico) en el  año 2010, de ellos 135 MWp nuevos, de los que 61 MWp deberían instalarse antes  de 2006 (el 15% en instalaciones aisladas y el 85% en instalaciones conectadas a  la red). Entre 1998 y 2001 se instalaron sólo 6,9 MWp. Mientras en Alemania  tenían 87,5 MWp (siete veces más que en España), gracias al programa 100.000  tejados solares, que prevé instalar 300 MWp entre 1999 y 2004. Incluso Holanda,  con poco sol y superficie, tenía más potencia instalada (12,2 MWp). El precio  del kWh fotovoltaico, con las primas, asciende a 0,397 euros (máximo) y a 0,217  euros (mínimo), frente a 0,72 y 0,35 en Austria, 0,48 en Alemania y 0,39 y 0,23  en Portugal. En España se fabricaron 50,85 MWp de células fotovoltaicas en 2002  (el 36% de la producción europea), destinados en casi un 90% a la exportación.  Los dos mayores fabricantes son Isofotón y BP Solar, aunque en el sector operan  182 empresas, que emplean a más de 4.000 personas. Los precios de los módulos  fotovoltaicos se han reducido mucho, desde 7,76 euros/Wp en 1990 a 3,3 euros/Wp  en 2000. En España, con una radiación solar diaria superior en la casi totalidad  del territorio a 4 kWh por metro cuadrado, el potencial es inmenso. Sólo en los  tejados de las viviendas españolas se podrían producir anualmente 180 TWh. En el  mundo, según el informe "Solar Generation" de la Asociación de la Industria  Fotovoltaica Europea y Greenpeace, se debería llegar a 276 TWh en el año 2020,  con unas inversiones anuales de 75.000 millones de euros.  
 Ríos  de energía
Ríos  de energíaLa energía hidroeléctrica se genera haciendo pasar una corriente  de agua a través de una turbina. La electricidad generada por una caída de agua  depende de la cantidad y de la velocidad del agua que pasa a través de la  turbina, cuya eficiencia puede llegar al 90%. El aprovechamiento eléctrico del  agua no produce un consumo físico de ésta, pero puede entrar en contradicción  con otros usos agrícolas o de abastecimiento urbano, y sobre todo, las grandes  centrales tienen un gran impacto ambiental. Las centrales hidroeléctricas en sí  mismas no son contaminantes; sin embargo, su construcción produce numerosas  alteraciones del territorio y de la fauna y flora: dificulta la migración de  peces, la navegación fluvial y el transporte de elementos nutritivos aguas  abajo, provoca una disminución del caudal del río, modifica el nivel de las  capas freáticas, la composición del agua embalsada y el microclima, y origina el  sumergimiento de tierras cultivables y el desplazamiento forzado de los  habitantes de las zonas anegadas. En la mayoría de los casos es la forma más  barata de producir electricidad, aunque los costes ambientales no han sido  seriamente considerados.  

El  potencial eléctrico aún sin aprovechar es enorme. Apenas se utiliza el 17% del  potencial a nivel mundial, con una gran disparidad según los países. Europa ya  utiliza el 60% de su potencial técnicamente aprovechable. Los países del tercer  mundo solamente utilizan del 8% de su potencial hidráulico. En España el  potencial adicional técnicamente desarrollable podría duplicar la producción  actual, alcanzando los 65 TWh anuales, aunque los costes ambientales y sociales  serían desproporcionados. Las minicentrales hidroeléctricas causan menos daños  que los grandes proyectos, y podrían proporcionar electricidad a amplias zonas  que carecen de ella. 

El Plan de Fomento fija como objetivo 720 nuevos MW, hasta  alcanzar los 2.230 MW. Entre 1998 y 2001 se han puesto en funcionamiento 95,4  MW, por lo que al ritmo actual no se alcanzará el objetivo, a causa sobre todo  de las barreras administrativas y el impacto ambiental. En el año 2001 la  potencia de las centrales hidráulicas con menos de 10 MW ascendió a 1.607,3 MW y  la producción llegó a 4.825 GWh, y en la gran hidráulica la potencia fue de  16.399,3 MW y la producción fue de 39.014 GWh. Hay que recordar que el año 2001  fue excepcional, pues llovió mucho más de lo usual. 
Energía eólica 
La energía eólica es una variante de la energía solar, pues  se deriva del calentamiento diferencial de la atmósfera y de las irregularidades  de relieve de la superficie terrestre. Sólo una pequeña fracción de la energía  solar recibida por la Tierra se convierte en energía cinética del viento y sin  embargo ésta alcanza cifras enormes, superiores en varias veces a todas las  necesidades actuales de electricidad. La energía eólica podría proporcionar  cinco veces más electricidad que el total consumido en todo el mundo, sin  afectar a las zonas con mayor valor ambiental. La potencia que se puede obtener  con un generador eólico es proporcional al cubo de la velocidad del viento; al  duplicarse la velocidad del viento la potencia se multiplica por ocho, y de ahí  que la velocidad media del viento sea un factor determinante a la hora de  analizar la posible viabilidad de un sistema eólico. La energía eólica es un  recurso muy variable, tanto en el tiempo como en el lugar, pudiendo cambiar  mucho en distancias muy reducidas. En general, las zonas costeras y las cumbres  de las montañas son las más favorables y mejor dotadas para el aprovechamiento  del viento con fines energéticos. 

La conversión de la energía del viento en electricidad se  realiza por medio de aerogeneradores, con tamaños que abarcan desde algunos  vatios hasta los 5.000 kilovatios (5 MW). Los aerogeneradores se han  desarrollado intensamente desde la crisis del petróleo en 1973, habiéndose  construido desde entonces más de 150.000 máquinas. La capacidad instalada era de  40.000 MW en 2003, concentrada en Alemania, España, Estados Unidos y Dinamarca.  En 2004 ya es competitiva la producción de electricidad en los lugares donde la  velocidad media del viento supera los 4 metros por segundo. Se espera que dentro  de unos pocos años también las máquinas grandes instaladas en el mar lleguen a  ser rentables. La energía eólica no contamina y su impacto ambiental es muy  pequeño comparado con otras fuentes energéticas. De ahí la necesidad de acelerar  su implantación en todas las localizaciones favorables, aunque procurando  reducir las posibles repercusiones negativas, especialmente en las aves y en el  paisaje, en algunas localizaciones. El carbón, y posteriormente la electricidad,  dieron al traste con el aprovechamiento del viento hasta la crisis energética de  1973, año en que suben vertiginosamente los precios del petróleo y se inicia el  renacimiento de una fuente cuya aportación en las próximas décadas, puede llegar  a cubrir el 20 por ciento de las necesidades mundiales de electricidad sin  cambios en la gestión de la red de distribución. 

En el año 2004 la potencia eólica en España superará los  7.000 MW. El precio del kWh en España era de 0,0628 euros en el sistema de  precios fijo o de 0,066 del pool más incentivo (0,037 del llamado precio pool y  0,0289 de compensaciones), frente a los 0,09 de Alemania, y es uno de los más  bajos de la Unión Europea, pero el sistema de apoyo al precio ha demostrado su  eficacia en Alemania y en España. Desde 1996 a 2002 el precio de la tarifa  eólica para los productores acogidos al Real Decreto 2366/94 ha bajado un  36,94%. Los costes de la eólica son ya competitivos con los de las energías  convencionales: unos 900 euros el KW instalado.  

En  el año 2010 en España llegaremos a 20.000 MW, y en el año 2040 podemos llegar  sin problemas a 100.000 MW, produciendo gran parte de la electricidad que  consumimos, y también hidrógeno, pero para ello se deben superar ciertas  dificultades para integrar la eólica en la red eléctrica, y superar la oposición  irracional a los nuevos parques eólicos. Cada kWh eólico permitiría ahorrar un  kilogramo de CO2, entre otras sustancias contaminantes. La eólica es la manera  más económica de reducir las emisiones contaminantes y avanzar hacia la  sostenibilidad. 
Energía geotérmicaEl gradiente térmico resultante de las  altas temperaturas del centro de la Tierra (superiores a los mil grados  centígrados), genera una corriente de calor hacia la superficie, corriente que  es la fuente de la energía geotérmica. El valor promedio del gradiente térmico  es de 25 grados centígrados por cada kilómetro, siendo superior en algunas zonas  sísmicas o volcánicas. Los flujos y gradientes térmicos anómalos alcanzan  valores máximos en zonas que representan en torno a la décima parte de las  tierras emergidas: costa del Pacífico en América, desde Alaska hasta Chile,  occidente del Pacífico, desde Nueva Zelanda a Japón, el este de África y  alrededor del Mediterráneo. El potencial geotérmico almacenado en los diez  kilómetros exteriores de la corteza terrestre supera en 2.000 veces a las  reservas mundiales de carbón. 

La explotación comercial de la geotermia, al margen de los  tradicionales usos termales, comenzó a finales del siglo XIX en Lardarello  (Italia), con la producción de electricidad. Hoy son ya 22 los países que  generan electricidad a partir de la geotermia, con una capacidad instalada de  unos 8.000 MW, equivalente a ocho centrales nucleares de tamaño grande. Estados  Unidos, Filipinas, México, Italia y Japón, en este orden, son los países con  mayor producción geotérmica.  

Actualmente,  una profundidad de perforación de 3.000 metros constituye el máximo  económicamente viable; otra de las limitaciones de la geotermia es que las  aplicaciones de ésta, electricidad o calor para calefacciones e invernaderos,  deben encontrarse en las proximidades del yacimiento en explotación. La  geotermia puede llegar a causar algún deterioro al ambiente, aunque la  reinyección del agua empleada en la generación de electricidad minimiza los  posibles riesgos. 

Los países con mayores recursos, en orden de importancia,  son China, Estados Unidos, Canadá, Indonesia, Perú y México. El potencial  geotérmico español es de 600 ktep anuales, según una estimación muy conservadora  del Instituto Geominero de España. Para el año 2010 se pretende llegar a las 150  Ktep. Los usos serían calefacción, agua caliente sanitaria e invernaderos, no  contemplándose la producción de electricidad. 
Biomasa La utilización de  la biomasa es tan antigua como el descubrimiento y el empleo del fuego para  calentarse y preparar alimentos, utilizando la leña. Aún hoy, la biomasa es la  principal fuente de energía para usos domésticos empleada por más de 2.000  millones de personas en el Tercer Mundo. Los empleos actuales son la combustión  directa de la leña y los residuos agrícolas y la producción de alcohol como  combustible para los automóviles en Brasil. Los recursos potenciales son  ingentes, superando los 120.000 millones de toneladas anuales, recursos que en  sus dos terceras partes corresponden a la producción de los bosques. 

¿Es la biomasa una energía alternativa? A lo largo y ancho  del planeta el consumo de leña está ocasionando una deforestación galopante. En  el caso del Brasil se ha criticado el empleo de gran cantidad de tierras  fértiles para producir alcohol que sustituya a la gasolina en los automóviles,  cuando la mitad de la población de aquel país está subalimentada. Por otra  parte, la combustión de la biomasa es contaminante. En el caso de la  incineración de basuras, la combustión emite contaminantes, algunos de ellos  cancerígenos y disruptores hormonales, como las dioxinas. También es muy  discutible el uso de tierras fértiles para producir energía en vez de alimentos,  tal y como se está haciendo en Brasil, o el empleo de leña sin proceder a  reforestar las superficies taladas. En España actualmente el potencial  energético de los residuos asciende a 26 Mtep, para una cantidad que en  toneladas físicas supera los 180 millones: 15 millones de toneladas de Residuos  Sólidos Urbanos con un potencial de 1,8 Mtep, 12 millones de toneladas de lodos  de depuradoras, 14 millones de t de residuos industriales (2,5 Mtep), 17 Mt de  residuos forestales (8,1 Mtep), 35 Mt de residuos agrícolas (12,1 Mtep), 30 Mt  de mataderos y 65 Mt de residuos ganaderos (1,3 Mtep). El reciclaje y la  reutilización de los residuos permitirán mejorar el medio ambiente, ahorrando  importantes cantidades de energía y de materias primas, a la vez que se trata de  suprimir la generación de residuos tóxicos y de reducir los envases. La  incineración no es deseable, y probablemente tampoco la producción de  biocombustibles, dadas sus repercusiones sobre la diversidad biológica, los  suelos y el ciclo hidrológico. A más largo plazo, el hidrógeno es una solución  más sostenible que el etanol y el metanol. El Plan de Fomento de las Energías  Renovables en España prevé que la biomasa llegue a 10.295 ktep. Hoy apenas  llegamos a 3.600 ktep (incluyendo los biocarburantes y el biogás), con un  incremento ínfimo respecto a años anteriores. Y las perspectivas no son mucho  mejores. Con las políticas actuales, en el año 2010 difícilmente se superará el  50% de los objetivos del Plan (poco más de 5 Mtep), y tampoco se debería hacer  mucho más. Los restos de madera, como sostiene ANFTA (Asociación Nacional de  Fabricantes de Tableros), son demasiado valiosos para ser quemados, pues  constituyen la materia prima base de la industria del tablero aglomerado y sólo  debe quemarse como aprovechamiento último, y España es muy deficitaria en restos  de madera (se importan más de 350.000 m3), y en madera en general (se importa  más del 50%). Además el CO2 se acumula en los tableros (cada metro cúbico de  tablero aglomerado fija 648 kg de CO2), mientras que la quema lo libera, se  genera más empleo en las zonas rurales, más valor añadido y se producen muebles  de madera al alcance de todos. El reciclaje debe tener prioridad frente al uso  energético y los únicos residuos de madera que se deberían incinerar son las  ramas finas de pino, los restos de matorral, las cortezas y el polvo de lijado.  Los costes de extracción y transporte de las operaciones de limpieza del monte  para las plantas de biomasa son de 0,16 euros por kg, a los que hay que añadir  los de almacén, cribado y astillado, secado, densificación y el coste del  combustible auxiliar. Hoy las centrales termoeléctricas de biomasa no son  viables económicamente, y además esos residuos también son necesarios para el  suelo (aporte de nutrientes, erosión). 
REFERENCIAS Internet   Revistas  APPAINFOLasenergías.comEficiencia Energética y Energías Renovables,    boletín del IDAE. Números 1, 2, 3, 4, 5 y 6.Energías RenovablesC.V. Revista    internacional de energía y medio ambienteEnergética XXIEra    SolarTecnoambienteInfopowerTecnoenergíaEnergía. Ingeniería Energética y    MedioambientalWorld Watch
Libros y estudios  *IDAE (1999). Plan de Fomento de las Energías Renovables en España.  Madrid.*Ministerio de Economía (2002). Planificación de las redes de transporte  eléctrico y gasista 2002-2011. Madrid.*ANFTA (Asociación Nacional de Fabricantes  de Tableros) (2002). Restos de madera: demasiado valiosos para ser quemados.  Madrid.*Johansson, T. B. et el (1993): Renewable Energy, Island Press,  Washington; D. Deudney y C. Flavin: "Renewable energy: The power to Choose", New  York, Norton, 1983.*Goldemberg et al.: Energy for a sustainable world, John  Wiley and sons, New Delhi, 1988.*Ogden, J.M. et Williams R. H.: Solar Hydrogen.  Moving Beyond Fossil Fuels, World Resources Institute, Washington,  1989.*Maycock, P.: Photovoltaic thecnology, perfomance, cost and market  forecast. PV Energy systems, Casanova, 2004.*ASIF (2003): Hacia un futuro con  electricidad solar. Madrid. José Santamarta Flórez director de World  Watch worldwatch@nodo50.org http://www.nodo50.org/worldwatch  Teléfono: +34 650 94 90 21